MATH 210: Introduction to Analysis

Fall 2015-2016, Midterm 2, Duration: 60 min.

Exercise 1.

- (a) (10 points) State the definition of a metric space.
- (b) (10 points) Prove that $(\mathbb{R}^2, d_{\infty})$ is a metric space.

Exercise 2.

- (1) (8 points) Prove that the series $\sum_{n>1} a_n$ with $a_n = \frac{1}{\sqrt{n+1}} \frac{1}{\sqrt{n}}$ is convergent and compute its sum.
- (2) (12 points) Show that the series $\sum \frac{a^n}{n}$ converges if and only if $-1 \le a < 1$. (3) 5 points. Assume that the series $\sum a_n^2$ and $\sum b_n^2$ converge. Prove that the series $\sum a_n b_n$ converges absolutely.

Exercise 3.

- (a) (10 points) Find the interior and the closure of \mathbb{Z} . Explain clearly to ensure full credits.
- (b) (10 points) Show that $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\} \cap \{(x,y) \in \mathbb{R}^2 \mid y \ge x^2\}$ is compact. Explain clearly to ensure full credits.

Exercise 4. We say that a sequence $\{(a_n, b_n)\}$ of \mathbb{R}^2 blows up if $d_{\infty}((a_n, b_n), (0, 0))$ diverges to $+\infty$.

- (a) (4 points) Prove or disprove using an explicit counterexample that if a sequence $\{(a_n, b_n)\}$ blows up then $|a_n|$ and $|b_n|$ diverge to $+\infty$.
- (b) (4 points) Prove that if a subset $A \subset \mathbb{R}^2$ is unbounded then there is a sequence $\{(a_n, b_n)\}$ of elements of A that blows up.
- (c) (4 points) Prove that if a subset $A \subset \mathbb{R}^2$ contains a sequence $\{(a_n, b_n)\}$ that blows up then A is unbounded.
- (d) Prove that the following sets are unbounded.
 - i. (4 points) $\mathbb{R} \times (0, 1) = \{(x, y) \in \mathbb{R}^2 \mid 0 < y < 1\}.$ ii. (4 points) $\{(x, y) \in \mathbb{R}^2 \mid x^2 = y^2\}.$

Exercise 5. Let $\{x_n\}$ be a sequence of real numbers.

- (a) In this question, we suppose that the series $\sum |x_{n+1} x_n|$ converges. The goal of this question is to prove that $\{x_n\}$ converges. Denote by S_N the partial sum of $\sum |x_{n+1} - x_n|$ of order N. Let $\varepsilon > 0$.
 - i. (5 points) Explain very briefly why there an integer N_0 such that for any integers $M, N \ge N_0$ we have $|S_M - S_N| < \varepsilon$.
 - ii. (5 points) Assume that $M \ge N$. Show that

$$|S_M - S_N| = |x_{N+1} - x_N| + |x_{N+2} - x_{N+1}| + \dots + |x_{M+1} - x_M|$$

2

- iii. (5 points) Deduce that for $M \ge N \ge N_0$ we have $|x_{M+1} x_N| < \varepsilon$. (<u>hint</u>: write $x_{M+1} x_N$ as a telescopic sum).
- iv. (5 points) Deduce that {x_n} converges.
 (b) (5 points) Give an example of a sequence {x_n} such that |x_{n+1} x_n| converges to zero but {x_n} diverges.