MATH 210: Introduction to Analysis

Fall 2015-2016, Midterm 2, Duration: 60 min.

Exercise 1.

(a) (10 points) State the definition of a metric space.
(b) ($\mathbf{1 0}$ points) Prove that $\left(\mathbb{R}^{2}, d_{\infty}\right)$ is a metric space.

Exercise 2.

(1) (8 points) Prove that the series $\sum_{n \geq 1} a_{n}$ with $a_{n}=\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n}}$ is convergent and compute its sum.
(2) (12 points) Show that the series $\sum \frac{a^{n}}{n}$ converges if and only if $-1 \leq a<1$.
(3) 5 points. Assume that the series $\sum a_{n}^{2}$ and $\sum b_{n}^{2}$ converge. Prove that the series $\sum a_{n} b_{n}$ converges absolutely.

Exercise 3.

(a) (10 points) Find the interior and the closure of \mathbb{Z}. Explain clearly to ensure full credits.
(b) (10 points) Show that $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \cap\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq x^{2}\right\}$ is compact. Explain clearly to ensure full credits.

Exercise 4. We say that a sequence $\left\{\left(a_{n}, b_{n}\right)\right\}$ of \mathbb{R}^{2} blows up if $d_{\infty}\left(\left(a_{n}, b_{n}\right),(0,0)\right)$ diverges to $+\infty$.
(a) (4 points) Prove or disprove using an explicit counterexample that if a sequence $\left\{\left(a_{n}, b_{n}\right)\right\}$ blows up then $\left|a_{n}\right|$ and $\left|b_{n}\right|$ diverge to $+\infty$.
(b) (4 points) Prove that if a subset $A \subset \mathbb{R}^{2}$ is unbounded then there is a sequence $\left\{\left(a_{n}, b_{n}\right)\right\}$ of elements of A that blows up.
(c) (4 points) Prove that if a subset $A \subset \mathbb{R}^{2}$ contains a sequence $\left\{\left(a_{n}, b_{n}\right)\right\}$ that blows up then A is unbounded.
(d) Prove that the following sets are unbounded.
i. (4 points) $\mathbb{R} \times(0,1)=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<y<1\right\}$.
ii. (4 points) $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}=y^{2}\right\}$.

Exercise 5. Let $\left\{x_{n}\right\}$ be a sequence of real numbers.
(a) In this question, we suppose that the series $\sum\left|x_{n+1}-x_{n}\right|$ converges. The goal of this question is to prove that $\left\{x_{n}\right\}$ converges. Denote by S_{N} the partial sum of $\sum\left|x_{n+1}-x_{n}\right|$ of order N. Let $\varepsilon>0$.
i. (5 points) Explain very briefly why there an integer N_{0} such that for any integers $M, N \geq N_{0}$ we have $\left|S_{M}-S_{N}\right|<\varepsilon$.
ii. (5 points) Assume that $M \geq N$. Show that

$$
\left|S_{M}-S_{N}\right|=\left|x_{N+1}-x_{N}\right|+\left|x_{N+2}-x_{N+1}\right|+\cdots+\left|x_{M+1}-x_{M}\right|
$$

iii. (5 points) Deduce that for $M \geq N \geq N_{0}$ we have $\left|x_{M+1}-x_{N}\right|<\varepsilon$. (hint: write $x_{M+1}-x_{N}$ as a telescopic sum).
iv. (5 points) Deduce that $\left\{x_{n}\right\}$ converges.
(b) ($\mathbf{5}$ points) Give an example of a sequence $\left\{x_{n}\right\}$ such that $\left|x_{n+1}-x_{n}\right|$ converges to zero but $\left\{x_{n}\right\}$ diverges.

